Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques
نویسندگان
چکیده
منابع مشابه
Unifying Least Squares, Total Least Squares and Data Least Squares
The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the vector b and/or the matrix A such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to b, while in data least squares (DLS) it is restricted to A. In scaled total least squares (Scaled TLS) [15], corrections to both b and A are allowed, ...
متن کاملNonlinear Least-squares Estimation
The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of t...
متن کاملthe role of task-based techniques on the acquisition of english language structures by the intermediate efl students
this study examines the effetivenss of task-based activities in helping students learn english language structures for a better communication. initially, a michigan test was administered to the two groups of 52 students majoring in english at the allameh ghotb -e- ravandi university to ensure their homogeneity. the students scores on the grammar part of this test were also regarded as their pre...
15 صفحه اولRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملMultivariate analysis of fMRI data by oriented partial least squares.
Partial least squares (PLS) has been used in multivariate analysis of functional magnetic resonance imaging (fMRI) data as a way of incorporating information about the underlying experimental paradigm. In comparison, principal component analysis (PCA) extracts structure merely by summarizing variance and with no assurance that individual component structures are directly interpretable or that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 1981
ISSN: 0006-3495
DOI: 10.1016/s0006-3495(81)84753-4